Understanding Molecular Simulation From Algorithms To Applications

This is likewise one of the factors by obtaining the soft documents of this understanding molecular simulation from algorithms to applications by online. You might not require more times to spend to go to the ebook introduction as well as search for them. In some cases, you likewise attain not discover the proclamation understanding molecular simulation from algorithms to applications that you are looking for. It will utterly squander the time.

However below, later you visit this web page, it will be so extremely easy to acquire as well as download lead understanding molecular simulation from algorithms to applications

It will not allow many become old as we accustom before. You can realize it even though exploit something else at house and even in your workplace. thus easy! So, are you question? Just exercise just what we give under as capably as review understanding molecular simulation from algorithms to applications what you gone to read!

Understanding Molecular Simulation-Daan Frenkel 2001-10-19
Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: · Transition path sampling and diffusive barrier crossing to simulate rare events · Dissipative particle dynamic as a coarse-grained simulation technique · Novel schemes to compute the long-ranged forces · Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations · Multiple-time step algorithms as an alternative for constraints · Defects in solids · The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules · Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.

Understanding Molecular Simulation-Daan Frenkel 1996 This book explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. Since a wide variety of computational tools exists, the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is
Illustrated in pseudocodes and their practical use in the case studies used in the text. Examples are included that highlight current applications, and the codes of the case studies are available on the World Wide Web. No prior knowledge of computer simulation is assumed.

Statistical Mechanics: Theory and Molecular Simulation - Mark Tuckerman 2010-02-11 Complex systems that bridge the traditional disciplines of physics, chemistry, biology, and materials science can be studied at an unprecedented level of detail using increasingly sophisticated theoretical methodology and high-speed computers. The aim of this book is to prepare burgeoning users and developers to become active participants in this exciting and rapidly advancing research area by uniting for the first time, in one monograph, the basic concepts of equilibrium and time-dependent statistical mechanics with the modern techniques used to solve the complex problems that arise in real-world applications. The book contains a detailed review of classical and quantum mechanics, in-depth discussions of the most commonly used ensembles simultaneously with modern computational techniques such as molecular dynamics and Monte Carlo, and important topics including free-energy calculations, linear-response theory, harmonic baths and the generalized Langevin equation, critical phenomena, and advanced conformational sampling methods. Burgeoning users and developers are thus provided firm grounding to become active participants in this exciting and rapidly advancing research area, while experienced practitioners will find the book to be a useful reference tool for the field.

Understanding Molecular Simulation - Daan Frenkel 1996 This book explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. Since a wide variety of computational tools exists, the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Examples are included that highlight current applications, and the codes of the case studies are available on the World Wide Web. No prior knowledge of computer simulation is assumed.

Extending and Modifying LAMMPS Writing Your Own Source Code - Dr. Shafat Mubin 2021-02-19 Understand the LAMMPS source code and modify it to meet your research needs, and run simulations for bespoke applications involving forces, thermostats, pair potentials and more with ease. Key Features Understand the structure of the LAMMPS source code Implement custom features in the LAMMPS source code to meet your research needs Run example simulations involving forces, thermostats, and pair potentials based on implemented features Book Description LAMMPS is one of the most widely used tools for running simulations for research in molecular dynamics. While the tool itself is fairly easy to use, more often than not you'll need to customize it to meet your specific simulation requirements. Extending and Modifying LAMMPS bridges this learning gap and helps you achieve this by writing custom code to add new features to LAMMPS source code. Written by ardent supporters of LAMMPS, this practical guide will enable you to extend the capabilities of LAMMPS with the help of step-by-step explanations of essential concepts, practical examples, and self-assessment questions. This LAMMPS book provides a hands-on approach to implementing associated methodologies that will get you up and running and productive in no time. You'll begin with a short introduction to the internal mechanisms of LAMMPS, and gradually transition to an overview of the source code along with a tutorial on modifying it. As you advance, you'll understand the structure, syntax, and organization of LAMMPS source code, and be able to write your own source code extensions to LAMMPS that implement features beyond the ones available in standard downloadable versions. By the end of this book, you'll have learned how to add your own extensions and modifications to the LAMMPS source code that can implement features that suit your simulation requirements. What you will learn Identify how LAMMPS input script commands are parsed within the source code Understand the architecture of the source code Relate source code elements to simulated quantities Learn how stored quantities are accessed within the source code Explore the mechanisms controlling pair styles, computes, and fixes Modify the source code to implement custom features in LAMMPS Who this book is for This book is for students, faculty members, and researchers who need to...
currently using LAMMPS or considering switching to LAMMPS, have a basic knowledge of how to use LAMMPS, and are looking to extend LAMMPS source code for research purposes. This book is not a tutorial on using LAMMPS or writing LAMMPS scripts, and it is assumed that the reader is comfortable with the basic LAMMPS syntax. The book is geared toward users with little to no experience in source code editing. Familiarity with C++ programming is helpful but not necessary.

Molecular Simulation of Fluids - Richard Sadus 2002-05-31 The aim of this book is to examine some of the important aspects of recent progress in the use of molecular simulation for investigating fluids. It encompasses both Monte Carlo and molecular dynamic techniques providing details of theory, algorithms and implementation.

The Art of Molecular Dynamics Simulation - D. C. Rapaport 2004-04 First time paperback of successful physics monograph. Copyright © Libri GmbH. All rights reserved.

Molecular Modelling: Principles And Applications, 2/E - Leach 2009-09

An Introduction to Molecular Dynamics - Mark S. Kemp 2019 "In the opening chapter of An Introduction to Molecular Dynamics, the method of statistical geometry, based on the construction of a Voronoi polyhedral, is applied to the pattern recognition of atomic environments and to the investigation of the local order in molecular dynamics-simulated materials. Next, the authors discuss the methodology of biomolecular simulations and their advancements, as well as their applications in the field of nanoparticle-biomolecular interactions. The theory of molecular dynamics simulation and some of the recent molecular dynamics methods such as steered molecular dynamics, umbrella sampling, and coarse-grained simulation are also discussed. The use of auxiliary programs in the cases of modified cyclodextrins is discussed. Additionally, results from molecular dynamics studies on cases of inclusion compounds of molecules of different sizes and shapes encapsulated in the same host cyclodextrin have been examined and compared. In closing, the authors discuss the methodology of molecular dynamics simulation with a non-constant force field. In the context of molecular simulations, the term "force field" refers to a set of equations and parameters for the calculation of forces acting on the particles of the system and its potential energy"--

Introduction to Practice of Molecular Simulation - Akira Satoh 2010-12-17 This book presents the most important and main concepts of the molecular and microsimulation techniques. It enables readers to improve their skills in developing simulation programs by providing physical problems and sample simulation programs for them to use. Provides tools to develop skills in developing simulations programs Includes sample simulation programs for the reader to use Appendix explains Fortran and C languages in simple terms to allow the non-expert to use them

Biomolecular and Bioanalytical Techniques - Vasudevan Ramesh 2019-05-13 An essential guide to biomolecular and bioanalytical techniques and their applications Biomolecular and Bioanalytical Techniques offers an introduction to, and a basic understanding of, a wide range of biophysical techniques. The text takes an interdisciplinary approach with contributions from a panel of distinguished experts. With a focus on research, the text comprehensively covers a broad selection of topics drawn from contemporary research in the fields of chemistry and biology. Each of the internationally reputed authors has contributed a single chapter on a specific technique. The chapters cover the specific technique’s background, theory, principles, technique, methodology, protocol and applications. The text explores the use of a variety of analytical tools to characterise biological samples. The contributors explain how to identify and quantify biochemically important molecules, including small molecules as well as biological macromolecules such as enzymes, antibodies, proteins, peptides and nucleic acids. This book is filled with essential knowledge and explores the skills needed to carry out the research and development roles in academic and industrial laboratories. A technique-focused book that bridges the gap between an introductory text and a book on advanced research methods Provides the necessary background and skills needed to advance
the research methods Features a structured approach within each chapter
Demonstrates an interdisciplinary approach that serves to develop independent thinking Written for students in chemistry, biological, medical, pharmaceutical, forensic and biophysical sciences, Biomolecular and Bioanalytical Techniques is an in-depth review of the most current biomolecular and bioanalytical techniques in the field.

Molecular Dynamics Simulation of Nanostructured Materials
Snehanshu Pal 2020-04-28
Molecular dynamics simulation is a significant technique to gain insight into the mechanical behavior of nanostructured (NS) materials and associated underlying deformation mechanisms at the atomic scale. The purpose of this book is to detect and correlate critically current achievements and properly assess the state of the art in the mechanical behavior study of NS material in the perspective of the atomic scale simulation of the deformation process. More precisely, the book aims to provide representative examples of mechanical behavior studies carried out using molecular dynamics simulations, which provide contributory research findings toward progress in the field of NS material technology.

Nonequilibrium Gas Dynamics and Molecular Simulation
Iain D. Boyd 2017-03-23
"The book is divided into two parts based on the overall goals, with the first part focusing on fundamental considerations, and the second part dedicated to describing computer simulation methods. The first section covers three different areas: (1) kinetic theory, (2) quantum mechanics, and (3) statistical mechanics. Important results from these three areas are then brought together to allow analysis of nonequilibrium processes in a gas based on molecular level considerations. Chapter 1 covers kinetic theory, in which the basic idea is to develop techniques to relate the properties and behavior of particles, representing atoms and molecules, to the fluid mechanical aspects of a gas at the macroscopic level. This requires us to provide a basic definition by what is meant by a particle, and how these particles interact with one another through the mechanism of inter-molecular collisions. This leads us into a discussion of modeling of macroscopic molecular transport processes, such as viscosity and thermal conductivity, that represents one of the first key successes of kinetic theory. We will find that kinetic theory relies on the use of statistical analysis techniques, such as probability density functions, due to the very large volumes of information involved in tracking the behavior of every single particle in a real gas flow"--

Introduction to Carbon Capture and Sequestration
Berend Smit 2014-01-10
The aim of the book is to provide an understanding of the current science underpinning Carbon Capture and Sequestration (CCS) and to provide students and interested researchers with sufficient background on the basics of Chemical Engineering, Material Science, and Geology that they can understand the current state of the art of the research in the field of CCS. In addition, the book provides a comprehensive discussion of the impact of CCS on the energy landscape, society, and climate as these topics govern the success of the science being done in this field. The book is aimed at undergraduate students, graduate students, scientists, and professionals who would like to gain a broad multidisciplinary view of the research that is being carried out to solve one of greatest challenges of our generation.

Contents: Energy and Electricity The Atmosphere and Climate Modeling The Carbon Cycle Introduction to Carbon Capture Absorption Adsorption Membranes Introduction to Geological Sequestration Fluids and Rocks Large-Scale Geological Carbon Sequestration Land Use and Geo-Engineering List of Symbols Credits

Readership: Students taking courses on environmental sciences and research level individuals who are interested in environmental issues related to CCS. Key Features: The first comprehensive textbook on Carbon Capture and Sequestration (CCS) A comprehensive discussion on the science of CCS and its impact on society and climate A multidisciplinary approach to CCS by the leading US research centers on CCS Keywords: Carbon Capture; Carbon Storage; Carbon Sequestration; Gas Separations

Molecular Dynamics Simulation
J. M. Haile 1997-03-14
"Provides a lot of reading pleasure and many new insights." -Journal of Molecular Structure
"This is the most entertaining, stimulating and useful book which can be thoroughly recommended to anyone with an interest in computer simulation." -Contemporary Physics
"A very useful introduction . . . more interesting to read than the often dry equation-based texts." -Journal of the American Chemical Society Written especially for the novice, Molecular
Dynamics Simulation demonstrates how molecular dynamics simulations work and how to perform them, focusing on how to devise a model for specific molecules and then how to simulate their movements using a computer. This book provides a collection of methods that until now have been scattered through the literature of the last 25 years. It reviews elements of sampling theory and discusses how modern notions of chaos and nonlinear dynamics explain the workings of molecular dynamics. Stresses easy-to-use molecules * Provides sample calculations and figures * Includes four complete FORTRAN codes

Computer Simulation of Liquids - M. P. Allen 1989 Computer simulation is an essential tool in studying the chemistry and physics of liquids. Simulations allow us to develop models and to test them against experimental data. This book is an introduction and practical guide to the molecular dynamics and Monte Carlo methods.

Molecular Dynamics - Ben Leimkuhler 2015-05-18 This book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications. Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method.

A Practical Introduction to the Simulation of Molecular Systems - Martin J. Field 2007-07-19 Molecular simulation is a powerful tool in materials science, physics, chemistry and biomolecular fields. This updated edition provides a pragmatic introduction to a wide range of techniques for the simulation of molecular systems at the atomic level. The first part concentrates on methods for calculating the potential energy of a molecular system, with new chapters on quantum chemical, molecular mechanical and hybrid potential techniques. The second part describes methods examining conformational, dynamical and thermodynamical properties of systems, covering techniques including geometry-optimization, normal-mode analysis, molecular dynamics, and Monte Carlo simulation. Using Python, the second edition includes numerous examples and program modules for each simulation technique, allowing the reader to perform the calculations and appreciate the inherent difficulties involved in each. This is a valuable resource for researchers and graduate students wanting to know how to use atomic-scale molecular simulations. Supplementary material, including the program library and technical information, available through www.cambridge.org/9780521852524.

Genetic Algorithms in Molecular Modeling - James Devillers 1996-06-07 Genetic Algorithms in Molecular Modeling is the first book available on the use of genetic algorithms in molecular design. This volume marks the beginning of a new series of books, Principles in QSAR and Drug Design, which will be an indispensable reference for students and professionals involved in medicinal chemistry, pharmacology, (eco)toxicology, and agrochemistry. Each comprehensive chapter is written by a distinguished researcher in the field. Through its up to the minute content, extensive bibliography, and essential information on software availability, this book leads the reader from the theoretical aspects to the practical applications. It enables the uninitiated reader to apply genetic algorithms for modeling the biological activities and properties of chemicals, and provides the trained scientist with the most up to date information on the topic. Extremely topical and timely. Sets the foundations for the development of computer-aided tools for solving numerous problems in QSAR and drug design. Written to be accessible without prior direct experience in genetic algorithms.
Materials Informatics-Olexandr Isayev 2019-10-21 Provides everything readers need to know for applying the power of informatics to materials science. There is a tremendous interest in materials informatics and application of data mining to materials science. This book is a one-stop guide to the latest advances in these emerging fields. Bridging the gap between materials science and informatics, it introduces readers to up-to-date data mining and machine learning methods. It also provides an overview of state-of-the-art software and tools. Case studies illustrate the power of materials informatics in guiding the experimental discovery of new materials. Materials Informatics: Methods, Tools and Applications is presented in two parts?Methodological Aspects of Materials Informatics and Practical Aspects and Applications. The first part focuses on developments in software, databases, and high-throughput computational activities. Chapter topics include open quantum materials databases; the ICSD database; open crystallography databases; and more. The second addresses the latest developments in data mining and machine learning for materials science. Its chapters cover genetic algorithms and crystal structure prediction; MQSPR modeling in materials informatics; prediction of materials properties; amongst others. -Bridges the gap between materials science and informatics -Covers all the known methodologies and applications of materials informatics -Presents case studies that illustrate the power of materials informatics in guiding the experimental quest for new materials -Examines the state-of-the-art software and tools being used today Materials Informatics: Methods, Tools and Applications is a must-have resource for materials scientists, chemists, and engineers interested in the methods of materials informatics.

Adsorption and Diffusion-Hellmut G. Karge 2008-06-17 "Molecular Sieves - Science and Technology" covers, in a comprehensive manner, the science and technology of zeolites and all related microporous and mesoporous materials. The contributions are grouped together topically in such a way that each volume deals with a specific sub-field. Volume 7 treats fundamentals and analyses of adsorption and diffusion in zeolites including single-file diffusion. Various methods of measuring adsorption and diffusion are described and discussed.

Computational Materials Science-A.M. Ovrutsky 2013-11-19 Computational Materials Science provides the theoretical basis necessary for understanding atomic surface phenomena and processes of phase transitions, especially crystallization, is given. The most important information concerning computer simulation by different methods and simulation techniques for modeling of physical systems is also presented. A number of results are discussed regarding modern studies of surface processes during crystallization. There is sufficiently full information on experiments, theory, and simulations concerning the surface roughening transition, kinetic roughening, nucleation kinetics, stability of crystal shapes, thin film formation, imperfect structure of small crystals, size dependent growth velocity, distribution coefficient at growth from alloy melts, superstructure ordering in the intermetallic compound. Computational experiments described in the last chapter allow visualization of the course of many processes and better understanding of many key problems in Materials Science. There is a set of practical steps concerning computational procedures presented. Open access to executable files in the book make it possible for everyone to understand better phenomena and processes described in the book. Valuable reference book, but also helpful as a supplement to courses Computer programs available to supplement examples Presents several new methods of computational materials science and clearly summarizes previous methods and results.

Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches-Christof Schütte 2013-12-26 Applications in modern biotechnology and molecular medicine often require simulation of biomolecular systems in atomic representation with immense length and timescales that are far beyond the capacity of computer power currently available. As a consequence, there is an increasing need for reduced models that describe the relevant dynamical properties while at the same time being less complex. In this book the authors exploit the existence of metastable sets for constructing such a reduced molecular dynamics model, the so-called Markov state model (MSM), with good approximation properties on the long timescales. With its many examples and illustrations, this book is addressed to graduate students, mathematicians, and practical computational scientists wanting an
overview of the mathematical background for the ever-increasing research activity on how to construct MSMs for very different molecular systems ranging from peptides to proteins, from RNA to DNA, and via molecular sensors to molecular aggregation. This book bridges the gap between mathematical research on molecular dynamics and its practical use for realistic molecular systems by providing readers with tools for performing in-depth analysis of simulation and data-analysis methods. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

Statistical Mechanics: Algorithms and Computations-Werner Krauth 2006-09-14 This book discusses the computational approach in modern statistical physics, adopting simple language and an attractive format of many illustrations, tables and printed algorithms. The discussion of key subjects in classical and quantum statistical physics will appeal to students, teachers and researchers in physics and related sciences. The focus is on orientation with implementation details kept to a minimum. -This book discusses the computational approach in modern statistical physics in a clear and accessible way and demonstrates its close relation to other approaches in theoretical physics. Individual chapters focus on subjects as diverse as the hard sphere liquid, classical spin models, single quantum particles and Bose-Einstein condensation. Contained within the chapters are in-depth discussions of algorithms, ranging from basic enumeration methods to modern Monte Carlo techniques. The emphasis is on orientation, with discussion of implementation details kept to a minimum. Illustrations, tables and concise printed algorithms convey key information, making the material very accessible. The book is completely self-contained and graphs and tables can readily be reproduced, requiring minimal computer code. Most sections begin at an elementary level and lead on to the rich and difficult problems of contemporary computational and statistical physics. The book will be of interest to a wide range of students, teachers and researchers in physics and the neighbouring sciences. An accompanying CD allows incorporation of the book's content (illustrations, tables, schematic programs) into the reader's own presentations. -This book is the best one I have reviewed all year.' Alan Hinchliffe, Physical Sciences Educational Reviews -

Ab Initio Molecular Dynamics-Dominik Marx 2009-04-30 Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.

Algorithms in Structural Molecular Biology-Bruce R. Donald 2011-06-01 An overview of algorithms important to computational structural biology that addresses such topics as NMR and design and analysis of proteins. Using the tools of information technology to understand the molecular machinery of the cell offers both challenges and opportunities to computational scientists. Over the past decade, novel algorithms have been developed both for analyzing biological data and for synthetic biology problems such as protein engineering. This book explains the algorithmic foundations and computational approaches underlying areas of structural biology including NMR (nuclear magnetic resonance); X-ray crystallography; and the design and analysis of proteins, peptides, and small molecules. Each chapter offers a concise overview of important concepts, focusing on a key topic in the field. Four chapters offer a short course in algorithmic and computational issues related to NMR structural biology, giving the reader a useful toolkit with which to approach the fascinating yet thorny computational problems in this area. A recurrent theme is understanding the interplay between biophysical experiments and computational algorithms. The text emphasizes the mathematical foundations of structural biology while maintaining a balance between
understanding-molecular-simulation-from-algorithms-to-applications

algorithms and a nuanced understanding of experimental data. Three emerging areas, particularly fertile ground for research students, are highlighted: NMR methodology, design of proteins and other molecules, and the modeling of protein flexibility. The next generation of computational structural biologists will need training in geometric algorithms, provably good approximation algorithms, scientific computation, and an array of techniques for handling noise and uncertainty in combinatorial geometry and computational biophysics. This book is an essential guide for young scientists on their way to research success in this exciting field.

Molecular Modeling and Simulation - Tamar Schlick 2013-04-18 Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text

Homology Molecular Modeling - Rafael Trindade Maia 2021-03-10 Homology modeling is an extremely useful and versatile technique that is gaining more and more space and demand in research in computational and theoretical biology. This book, "Homology Molecular Modeling - Perspectives and Applications", brings together unpublished chapters on this technique. In this book, 7 chapters are intimately related to the theme of molecular modeling, carefully selected and edited for academic and scientific readers. It is an indispensable read for anyone interested in the areas of bioinformatics and computational biology. Divided into 4 sections, the reader will have a didactic and comprehensive view of the theme, with updated and relevant concepts on the subject. This book was organized from researchers to researchers with the aim of spreading the fascinating area of molecular modeling by homology.

The Monte Carlo Method in Condensed Matter Physics - Kurt Binder 2012-12-06 The Monte Carlo method is now widely used and commonly accepted as an important and useful tool in solid state physics and related fields. It is broadly recognized that the technique of "computer simulation" is complementary to both analytical theory and experiment, and can significantly contribute to advancing the understanding of various scientific problems. Widespread applications of the Monte Carlo method to various fields of the statistical mechanics of condensed matter physics have already been reviewed in two previously published books, namely Monte Carlo Methods in Statistical Physics (Topics Curro Phys., Vol. 7, 1st edn. 1979, 2nd edn. 1986) and Applications of the Monte Carlo Method in Statistical Physics (Topics Curro Phys., Vol. 36, 1st edn. 1984, 2nd edn. 1987). Meanwhile the field has continued its rapid growth and expansion, and applications to new fields have appeared that were not treated at all in the above two books (e.g. studies of irreversible growth phenomena, cellular automata, interfaces, and quantum problems on lattices). Also, new methodic aspects have emerged, such as aspects of efficient use of vector computers or parallel computers, more efficient analysis of simulated systems con figurations, and methods to reduce critical slowing down at phase transitions. Taken together with the extensive activity in certain traditional areas of research (simulation of classical and quantum fluids, of macromolecular materials, of spin glasses and quadrupolar glasses, etc.

Protein Folding in Silico - Irena Roterman-Konieczna 2012-10-04 Protein folding is a process by which a protein structure assumes its functional shape of conformation, and has been the subject of research since the publication of the first software tool for protein structure prediction. Protein folding in silico approaches this issue by introducing an ab initio model that attempts to simulate as far as possible the folding process as it takes place in vivo, and attempts to construct a mechanistic model on the basis of the predictions made. The opening chapters discuss the early stage intermediate and late stage intermediate models, followed by a discussion of structural information that affects the interpretation of the folding process. The second half of the book covers a variety of topics including ligand binding site recognition, the “fuzzy oil drop” model and its use in simulation of the polypeptide chain, and misfolded proteins. The book ends with an overview of a number of other ab initio methods for protein structure predictions and some concluding remarks. Discusses a range of ab initio models for protein structure prediction Introduces a unique model based on
experimental observations Describes various methods for the quantitative assessment of the presented models from the viewpoint of information theory

Particle Detectors - Claus Grupen 2011-09-22
The scope of the detection techniques in particle detectors is very wide, depending on the aim of the measurement. Detectors cover the measurement of energies from the very low to the highest of energies observed in cosmic rays. Describing the instrumentation for experiments in high energy physics and astroparticle physics, this edition describes track detectors, calorimeters, particle identification, neutrino detectors, momentum measurement, electronics, and data analysis. It also discusses applications of these detectors in other fields such as nuclear medicine, radiation protection and environmental science. Problem sets have been added to each chapter and additional instructive material has been provided, making this an excellent reference for graduate students and researchers in particle physics.

Biomolecular Simulations in Structure-Based Drug Discovery - Francesco L. Gervasio 2019-04-29
A guide to applying the power of modern simulation tools to better drug design
Biomolecular Simulations in Structure-based Drug Discovery offers an up-to-date and comprehensive review of modern simulation tools and their applications in real-life drug discovery, for better and quicker results in structure-based drug design. The authors describe common tools used in the biomolecular simulation of drugs and their targets and offer an analysis of the accuracy of the predictions. They also show how to integrate modeling with other experimental data. Filled with numerous case studies from different therapeutic fields, the book helps professionals to quickly adopt these new methods for their current projects. Experts from the pharmaceutical industry and academic institutions present real-life examples for important target classes such as GPCRs, ion channels and amyloids as well as for common challenges in structure-based drug discovery. Biomolecular Simulations in Structure-based Drug Discovery is an important resource that:
- Contains a review of the current generation of biomolecular simulation tools that have the robustness and speed that allows them to be used as routine tools by non-specialists
- Includes information on the novel methods and strategies for the modeling of drug-target interactions within the framework of real-life drug discovery and development
- Offers numerous illustrative case studies from a wide-range of therapeutic fields
- Presents an application-oriented reference that is ideal for those working in the various fields
Written for medicinal chemists, professionals in the pharmaceutical industry, and pharmaceutical chemists, Biomolecular Simulations in Structure-based Drug Discovery is a comprehensive resource to modern simulation tools that complement and have the potential to complement or replace laboratory assays for better results in drug design.

Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes - Samuel Safran 2018-03-08
Understanding the structural and thermodynamic properties of surfaces, interfaces, and membranes is important for both fundamental and practical reasons. Important applications include coatings, dispersants, encapsulating agents, and biological materials. Soft materials, important in the development of new materials and the basis of many biological systems, cannot be designed using trial and error methods due to the multiplicity of components and parameters. While these systems can sometimes be analyzed in terms of microscopic mixtures, it is often conceptually simpler to regard them as dispersions and to focus on the properties of the internal interfaces found in these systems. The basic physics centers on the properties of quasi-two-dimensional systems embedded in the three-dimensional world, thus exhibiting phenomena that do not exist in bulk materials. This approach is the basis behind the theoretical presentation of Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. The approach adapted allows one to treat the rich diversity of phenomena investigated in the field of soft matter physics (including both colloid/interface science as well as the materials and macromolecular aspects of biological physics) such as interfacial tension, the roughening transition, wetting, interactions between surfaces, membrane elasticity, and self-assembly. Presented as a set of lecture notes, this book is aimed at physicists, physical chemists, biological physicists, chemical engineers, and materials scientists who are interested in the statistical mechanics that underlie the macroscopic, thermodynamic properties of surfaces, interfaces, and membranes. This paperback edition contains all the material published in the original hard-cover edition as well as additional clarifications and explanations.
Computer Simulations in Condensed Matter: From Materials to Chemical Biology
Mauro Ferrario 2007-03-09
This comprehensive collection of lectures by leading experts in the field introduces and reviews all relevant computer simulation methods and their applications in condensed matter systems. Volume 1 is an in-depth introduction to a vast spectrum of computational techniques for statistical mechanical systems of condensed matter. Volume 2 is a collection of state-of-the-art surveys on numerical experiments carried out for a great number of systems.

Nonequilibrium Molecular Dynamics
Billy D. Todd 2017-03-16
Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and how to compute it from basic microscopic principles, and generalized hydrodynamics.

Computational Tools for Chemical Biology
Sonsoles Martín-Santamaría 2017-11-01

Monte Carlo Methods in Statistical Physics
M. E. J. Newman 1999-02-11
This book provides an introduction to the use of Monte Carlo computer simulation methods suitable for beginning graduate students and beyond. It is suitable for a course text for physics or chemistry departments or for self-teaching.

Molecular Driving Forces
Ken Dill 2010-10-21
Molecular Driving Forces, Second Edition E-book is an introductory statistical thermodynamics text that describes the principles and forces that drive chemical and biological processes. It demonstrates how the complex behaviors of molecules can result from a few simple physical processes, and how simple models provide surprisingly accurate insights into the workings of the molecular world.
Widely adopted in its First Edition, Molecular Driving Forces is regarded by teachers and students as an accessible textbook that illuminates underlying principles and concepts. The Second Edition includes two brand new chapters: (1) "Microscopic Dynamics" introduces single molecule experiments; and (2) "Molecular Machines" considers how nanoscale machines and engines work. "The Logic of Thermodynamics" has been expanded to its own chapter and now covers heat, work, processes, pathways, and cycles. New practical applications, examples, and end-of-chapter questions are integrated throughout the revised and updated text, exploring topics in biology, environmental and energy science, and nanotechnology. Written in a clear and reader-friendly style, the book provides an excellent introduction to the subject for novices while remaining a valuable resource for experts.

Machine Learning Meets Quantum Physics - Kristof T. Schütt 2020-06-03
Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.