Thank you unconditionally much for downloading [eBooks] Quantum Transport Theory Frontiers In Physics...
Quantum transport theory are discussed in Chapter 22. The presentation also includes the latest developments — quantum kinetics — related to modern ultrafast spectroscopy (Chapters 23-30). This second edition was improved, restructured, and enriched with new results from the recent papers of the author. Chapter 11 has a new feature. Several new useful figures were added throughout the book as well.

Statistical Plasma Physics, Volume I

- Setsuo Ichimaru 2018-05-04

Plasma physics is an integral part of statistical physics, complete with its own basic theories. Designed as a two-volume set, Statistical Plasma Physics is intended for advanced undergraduate and beginning graduate courses in physics and statistical physics, and as such, its presentation is self-contained and should be read without difficulty by those with backgrounds in classical mechanics, electricity and magnetism, quantum mechanics, statistical mechanics, and statistics. Major topics include plasma phenomena in nature, kinetic equations, plasmas and dielectric media, electromagnetic properties of Vlasov plasmas in thermodynamic equilibria, transient processes, and instabilities.

Lie Algebras In Particle Physics

- Howard Georgi 2018-05-04

In this book, the author convinces that Sir Arthur Stanley Eddington had things a little bit wrong, as least as far as physics is concerned. He explores the theory of groups and Lie algebras and their representations to use group representations as labor-saving tools.

Basic Principles Of Plasma Physics

- Setsuo Ichimaru 2018-03-08

The book describes a statistical approach to the basics of plasma physics.

Balanced Equation Approach To Electron Transport In Semiconductors

- Xiaolin Lei 2008

This book presents a systematic, comprehensive and up-to-date description of the physical basis of the balance equation transport theory and its applications in bulk and low-dimensional semiconductors. The different aspects of the balance equation method, originally proposed by C S Ting and the author of the present book, were reviewed in the volume entitled Physics of Hot Electron Transport in Semiconductors (edited by C S Ting, World Scientific, 1992). Since then, this method has been extensively developed and applied to various new fields, such as transport in semiconductor systems, optically nonlinear systems and semiconductor devices, transient behavior of superlattices, hot-electron magnetotransport, effects of impact ionization in transport, nonlinear-induced semiconductor lasers, modulation-driven transport and interband cooling, etc. Due to its simplicity and effectiveness, the balance equation approach has become a useful tool to tackle the many transport phenomena in semiconductors, and provides a reliable basis for developing theories, analyzing devices and exploring new applications.